注册账号 | 忘记密码
气象台(包括民航、军队等气象台)当预报员或去气象局当业务人员、气象科研院所研究人员,大学气象类专业教学工作;气候专业可以去气象局当业务人员、气象科研院所研究人员,大学气象类专业教学工作;应用气象可以进行环保、气象、水文、工程设计(部分工作)等方面的工作
云滴增大为雨滴、雪花或其它降水物,降至地面就是降水的形成过程。
使云滴增大的过程主要有二:一为云滴凝结(或凝华)增长;一为云滴相互碰并增长。实际上,云滴的增长是这两种过程同时作用的结果。云滴凝结(或凝华)增长: 凝结(或凝华)增长过程是指云滴依靠水汽分子在其表面上凝聚而增长的过程。在云的形成和发展阶段,由于云体继续上升,绝热冷却,或云外不断有水汽输入云中,使云内空气中的水汽压大于云滴的饱和水汽压,因此云滴能够由水汽凝结(或凝华)而增长。但是,一旦云滴表面产生凝结(或凝华),水汽从空气中析出,空气湿度减小,云滴周围便不能维持过饱和状态,而使凝结(或凝华)停止。因此,一般情况下,云滴的凝结(或凝华)增长有一定的限度。而要使这种凝结(或凝华)增长不断地进行,还必须有水汽的扩散转移过程,即当云层内部存在着冰水云滴共存、冷暖云滴共存或大小云滴共存的任一种条件时,产生水汽从一种云滴转化至另一种云滴上的扩散转移过程。例如,在冰晶和过冷却水滴共存的混合云中,在温度相同的条件下,由于冰面饱和水汽压小于水面饱和水汽压,当空气中的现有水汽压介于两者之间时,过冷却水滴就会蒸发,水汽就转移凝华到冰晶上去、使冰晶不断增大,而过冷却水滴则不断减小。当冷暖云滴共存或大小云滴共存时,同样也可发生这种现象,使冷(或大)的云滴不断增大。云滴的碰并增长: 云滴经常处于运动之中,这就可能使它们发生碰并。大小云滴之间发生碰并而合并增大的过程,称为碰并增长过程。云内的云滴大小不一,相应地具有不同的运动速度。大云滴下降速度比小云滴快,因而大云滴在下降过程中很快追上小云滴,大小云滴相互碰撞而粘附起来,成为较大的云滴。在有上升气流时,当大小云滴被上升气流向上带时,小云滴也会追上大云滴并与之合并,成为更大的云滴。云滴增大以后,它的横截面积变大,在下降过程中又可合并更多的水云滴。有时在有上升气流的云中,当大小水滴被上升气流挟带而上升时,小水滴也可以赶上大水滴与之合并。这种在重力场中由于大小云滴速度不同而产生的碰并现象,称为重力碰并。由于碰并作用,水滴不断增大,在空气中下降时就不再保持球形。开始下降时,底部平整,上部因表面张力而保持原来的球形。当水滴继续增大,在空气中下降时,除受表面张力外,还要受到周围作用在水滴上的压力以及因重力引起的水滴内部的静压力差,二者均随水滴的增长及下降而不断增大。在三种力的作用下,水滴变形越来越剧烈,底部向内凹陷,形成一个空腔。空腔越变越大,越变越深,上部越变越薄,最后破碎成许多大小不同的水滴。水滴在下降过程中保持不破碎的最大尺度称为临界尺度,常用等体积球体的半径来表示,称为临界半径或破碎半径。在不同的气流条件下,临界半径是不同的。如在均匀气流条件下,临界半径为450—500μm。而在有扰动的瞬时气流条件下,临界半径约为300μm。在自然界中观测到的临界半径为300—350μm,这是因为大气具有湍流的缘故。当大气中的雨滴增大到300—350μm时,就要破碎成几个较大的滴和一些小滴,它们可以被上升气流携带上升,并在上升过程中作为新一代的胚胎而增长,长大到上升气流支托不住时再次下降,在下降过程中继续增大,当大到临界半径后,再次破碎分裂而重复上述过程。云中水滴增大—破碎—再增大—再破碎的循环往复过程,常用夹解释暖云降水的形成,称之为“链锁反应”,有时也称为暖云的繁生机制。产生“链锁反应”的条件是:上升气流要大于6m/s(对于不同的云滴有不同的要求),云中含水量要大于2g/m3,同时还要求一定的云厚。当然,“链锁反应”不会无限地继续下去,因为强烈的上升气流无法持久,云的宏观条件和微观结构也在迅速改变。同时,当大量雨滴下降时会抑制上升气流,或带来下沉气流。例如雷雨时的情况,下一阵大雨之后、云体即崩溃消散。上述两种云滴增大过程在由云滴转化为降水的过程中始终存在。但观测表明,在云滴增长的初期,凝结(或凝华)增长为主,碰并为次。当云滴增大到一定阶段(一般直径达50—70μm)后,凝结(或凝华)过程退居次要地位,而以重力碰并为主。在低纬度地区,云中出现冰水共存的机会较少,形成所谓暖云(指整个云体的温度在0℃以上,云体由水滴构成,又称为水成云)降水,这时碰并作用更为重要。总之,凝结(或凝华)增长和碰并增长两种过程是不可分割的。以上就是关于“气象学和气候学怎么复习”的全部内容,希望能帮到您!
免责声明:本网刊载此文,是出于传递更多信息之目的,本网站所提供的信息仅供参考之用,并不代表本网赞同其观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。若有来源标注错误或侵犯了您的合法权益,请及时与我们联系,kangmeiyishou@163.com,本站将会在24小时内处理完毕。